Long Division of Polynomials: (x³ + 3x² - x + 2) / (x - 1)
Long division of polynomials is a method used to divide one polynomial by another. It is similar to the long division of numbers, but with some key differences.
Steps Involved
Let's divide the polynomial (x³ + 3x² - x + 2) by (x - 1) using long division:
- Set up the division: Write the dividend (x³ + 3x² - x + 2) inside the division symbol and the divisor (x - 1) outside.
________
x - 1 | x³ + 3x² - x + 2
- Divide the leading terms: Divide the leading term of the dividend (x³) by the leading term of the divisor (x). This gives us x². Write x² above the division symbol.
x²_______
x - 1 | x³ + 3x² - x + 2
- Multiply the divisor by the quotient term: Multiply (x - 1) by x². This gives us x³ - x². Write this result below the dividend.
x²_______
x - 1 | x³ + 3x² - x + 2
x³ - x²
- Subtract: Subtract the result from the dividend. Change the signs of the terms in the second row and add.
x²_______
x - 1 | x³ + 3x² - x + 2
x³ - x²
-------
4x² - x
- Bring down the next term: Bring down the next term of the dividend (-x) next to the result.
x²_______
x - 1 | x³ + 3x² - x + 2
x³ - x²
-------
4x² - x + 2
- Repeat steps 2-5: Repeat the process with the new dividend (4x² - x + 2). Divide the leading term (4x²) by the leading term of the divisor (x), which gives us 4x. Write 4x next to the x² above the division symbol.
x² + 4x _____
x - 1 | x³ + 3x² - x + 2
x³ - x²
-------
4x² - x + 2
4x² - 4x
- Subtract again: Subtract the result from the new dividend.
x² + 4x _____
x - 1 | x³ + 3x² - x + 2
x³ - x²
-------
4x² - x + 2
4x² - 4x
-------
3x + 2
- Bring down the next term: Bring down the last term of the dividend (2).
x² + 4x _____
x - 1 | x³ + 3x² - x + 2
x³ - x²
-------
4x² - x + 2
4x² - 4x
-------
3x + 2
- Repeat steps 2-5: Divide the leading term of the new dividend (3x) by the leading term of the divisor (x), which gives us 3. Write 3 next to the 4x above the division symbol.
x² + 4x + 3 ___
x - 1 | x³ + 3x² - x + 2
x³ - x²
-------
4x² - x + 2
4x² - 4x
-------
3x + 2
3x - 3
- Subtract again: Subtract the result from the new dividend.
x² + 4x + 3 ___
x - 1 | x³ + 3x² - x + 2
x³ - x²
-------
4x² - x + 2
4x² - 4x
-------
3x + 2
3x - 3
-----
5
- The remainder: The final result is 5, which is our remainder.
Result
Therefore, the result of dividing (x³ + 3x² - x + 2) by (x - 1) is:
x² + 4x + 3 + 5/(x - 1)
This can also be written as:
x² + 4x + 3 + (5/x-1)